Detailed course description:

  • Short recap of VARs
  • Bayesian linear regression
  • Marginal likelihood. hierarchical priors.
  • The independent/conjugate normal-inverse Wishart prior, Litterman/Jeffrey’s/Zellner’s prior, Theil mixed estimator
  • Gibbs sampling, Monte Carlo sampling, corvengence, mixing
  • Carter-Kohn algorithm, The Kim, Shepard, and Chib algorithm, Metropolis-Hastings algorithms,
  • VARs with time-varying volatilities.
  • Large Bayesian VARs, Stochastic search variable selection
    Markov-switching model, Hamilton Filter, MS-VAR, panel MS-VAR
  • Bayesian matrix autogregressive model (BMAR)
  • Unobserved component models
  • Bayesian Nonparametric, Dirichlet and Pitman-Yor process priors, finite and infinite mixture, mixture mixed VAR
  • Point, density forecasts, fan charts, evaluation of forecasts
  • Bayesian model averaging, density forecast combinations

Practical classes are taught in Matlab. Participants are asked to install the software before the course.

28.01.2025 – 31.01.2025
15:00-21:30 GMT+1(Warsaw, Madrid, Berlin, Rome)
9:00-15:30 EST (Boston, New York, Washington)
24 hours contact hours